Part Number Hot Search : 
SP481EEN HY57V IRFR220 1BS302 1N5629A HK160 00220 2000330
Product Description
Full Text Search
 

To Download KS0123 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 KS0123 Data Sheet
DIGITAL VIDEO ENCODER
The KS0123 multi-standard video encoder converts CCIR 656 8-bit multiplexed digital component video into analog baseband signals. It outputs composite video (CVBS) and S-Video simultaneously at three analog output pins. The encoder implements Macrovision revision 6.0 antitaping scheme. Additionally, it contains a color subcarrier genlock to support analog/digital video splicing. The video outputs conform to either SMPTE 170M (NTSC) or CCIR 624 (PAL) standards. 44 PLCC
MULTIMEDIA VIDEO
ORDERING INFO RMATION
FEATURES
* Macrovision revision 6.0 anti-taping support * 8-bit parallel CCIR 656 CbYCr input format * Synchronizes to CCIR 656 AVE time reference codes for horizontal and vertical timing generation in slave mode operation * Generates HSYN and FIELD signals in master mode operation * Programmable subcarrier frequency, SCH phase, and synchronous field display to support MPEG II picture-coding-extension * Optional subcarrier genlock to analog sc_ref referf ence * 650 kHz or 1.3 MHz chrominance bandwidth selection * Support NTSC, PAL, PAL-M and PAL-N * Switchable pedestal with gain compensation * Selectable 37 nsec YC delay pre-compensation * Video outputs meet SMPTE 170M or CCIR 624 spec Device KS0123 Package 44 PLCC Temperature Range 0~+70C
* 27 MHz DAC conversion rate * Triple 10-bit DAC' for simultaneous S-video s and composite output * 2 -wire serial host interface * 8 general purpose I/O pins * JTAG test interface * Single 5 V supply with power down mode * 44-pin PLCC package
Application
* Settop Box Video Encoding * MPEG Playback * Multimedia
BLOCK DIAGRAM
PXCK Demux and Sync extract Interpolator 4:2:2/4:4:4
R-Y LPF LPF B-Y 10-bit
Chroma Modulator INT
DAC
C
PD[7:0]
10-bit
Y HSYN FIELD SDA SCL SA1 SA2 RESET
Host Interface
DAC
10-bit
Y
Video Timing Gen JTAG
Sync & Blank insert Subcarrier Synthesizer Genlock
+
DAC D/A Ref.
CVBS Analog Interface CSync Clamp
I/O
Modified on May/04/2000
PALID
General purpose
SC_REF
SC_FSC
TDO
TDI TMS TCK
Genlock Interface
PAGE 1 OF 44
KS0123 Data Sheet
PIN ASSIGNMENT - 44 PLCC
BYPASS
MULTIMEDIA VIDEO
VDDA
CVBS 30
VSSA
39 PD5 40 PD4 41 PD3 42 PD2 43 PD1 44 VDD 1 VSS PD0 SA2 SA1 2 3 4 5
38
37
36
35
34
33
32
31
29 28 RREF 27 VREF 26 VDDA 25 PXCK 24 VSS
KS0123
VSSA 23 VDD 22 RESET 21 TCK 20 TMS 19 TDI 18 TDO 17 D0/CSYN
VDD
VSS
PD6
PD7
C
SDA 6
7
8
9 D7/PAL_ID
10 D6/SC_SYNC
11
12
13
14 D3/HSYN
Y
15 D2/FIELD
16 D1/CLAMP
SC_REF
TYPICAL APPLICATION
The Encoder is shown in a typical settop box application.
CHANNEL DECODER
MPEG VIDEO DECODER
VSS
SCL
D5
D4
ENCODER KS0123
TV Monitor
Figure 1. Typical Application
Modified on May/04/2000
PAGE 2 OF 44
KS0123 Data Sheet
PIN DESCRIPTION
Pin Name CLOCK INPUT PXCK 25 I 27 MHz clock input. TTL/CMOS. Pin # Type Description
MULTIMEDIA VIDEO
PIXEL DATA PORT PD7 - PD0 38-44, 3 I Pixel data inputs. TTL/CMOS.
GENERAL PURPOSE PORT AND OTHER SIGNALS SC_REF D7/PAL_ID 8 9 I I/O I/O I/O I/O I/O I/O I/O I/O Subcarrier reference input. TTL. General Purpose I/O Port 7 or PAL_ID input. TTL/CMOS. General Purpose I/O Port 6 or SC_SYNC input. TTL/CMOS. General Purpose I/O Port 5. TTL/CMOS. General Purpose I/O Port 4. TTL/CMOS. General Purpose I/O Port 3 or HSYN output. TTL/CMOS. General Purpose I/O Port 2 or FIELD output. TTL/CMOS. General Purpose I/O Port 1 or CLAMP output. TTL/CMOS. General Purpose I/O Port 0 or CSYN output. TTL/CMOS.
D6/SC_SYNC 10 D5 D4 D3/HSYN D2/FIELD D1/CLAMP D0/CSYN 11 12 14 15 16 17
SERIAL MICROPROCESSOR PORT SDA SCL SA1 SA2 RESET RESET 22 I Master reset input. TTL. 6 7 5 4 I/O I I I Serial data I/O. Open drain. Serial clock input. Slave address select. TTL. Slave address select. TTL.
VIDEO OUTPUTS CVBS Y C 30 32 35 O O O Composite video output. Luminance output. Chrominance output.
DAC REFERENCE AND COMPENSATION VREF BYPASS RREF 27 33 28 I/O I/O I/O Voltage reference I/O. Connect a 0.1 F capacitor to VSSA. Compensation capacitor. Connect a 0.1 F capacitor to VDDA. Current setting resistor.
Modified on May/04/2000
PAGE 3 OF 44
KS0123 Data Sheet
PIN DESCRIPTION (Continued)
Pin Name JTAG PORT TDI TMS TCK TDO POWER VDD VDDA GROUND VSS VSSA 2,13,24,36 29,31 0V 0V Digital ground. Analog ground. 1,23,37 26,34 +5V +5V Digital power supply. Analog power supply. 19 20 21 18 I I I O Data input port. TTL. Scan select input. TTL. Scan clock input. TTL. Data output port. CMOS. Pin # Type Description
MULTIMEDIA VIDEO
Modified on May/04/2000
PAGE 4 OF 44
KS0123 Data Sheet
PIN CROSS REFERENCE
Numerical Order by Pin Number Pin # 1 2 3 4 5 6 7 8 9 10 11 Name VDD VSS PD0 SA2 SA1 SDA SCL SC_REF D7/PAL_ID D6/SC_SYNC D5 Pin # 12 13 14 15 16 17 18 19 20 21 22 Name D4 VSS D3/HSYN D2/FIELD D1 D0 TD0 TD1 TMS TCK RESET Pin # 23 24 25 26 27 28 29 30 31 32 33 Name VDD VSS PXCK VDDA VREF RREF VSSA CVBS VSSA Y BYPASS
MULTIMEDIA VIDEO
Pin # 34 35 36 37 38 39 40 41 42 43 44
Name VDDA C VSS VDD PD7 PD6 PD5 PD4 PD3 PD2 PD1
Alphabetical Order by Pin Name Name BYPASS C CVBS D0 D1 D2/FIELD D3/HSYN D4 D5 D6/SC_SYNC D7/PAL_ID Pin # 33 35 30 17 16 15 14 12 11 10 9 Name PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PXCK RESET RREF Pin # 3 44 43 42 41 40 39 38 25 22 28 Name SA1 SA2 SCL SC_REF SDA TCK TDI TDO TMS VDD VDD Pin # 5 6 7 8 6 21 19 18 20 1 23 Name VDD VDDA VDDA VREF VSS VSS VSS VSS VSSA VSSA Y Pin # 37 26 34 27 2 13 24 36 29 31 32
Modified on May/04/2000
PAGE 5 OF 44
KS0123 Data Sheet
GENERAL DESCRIPTION
MULTIMEDIA VIDEO
The encoder accepts 27 MHz 8-bit multiplexed digital component video in CCIR 656 CbYCr format at the Pixel Data (PD) port. The pixel data are demultiplexed into luminance and chrominance components for interpolation and low pass filtering to reduce cross luma/chroma interference. The filtered chrominance signals are modulated onto a color subcarrier and added to the processed luminance components to form the composite video (CVBS). The digital CVBS and S-Video signals are interpolated to 27 MHz rate and then converted to analog forms by 3 10bit D/A converters. Anti-taping pulses, synch signals and color burst are generated internally. The rise and fall times of those pulses are controlled to reduce ringing. The shaped signals are inserted into the video stream controlled by the timing generator. The encoder also contains a color subcarrier PLL, which when enabled will frequency and phase lock the color subcarrier to an external analog fsc or 4 x fsc reference. The SCH phase can be adjusted to compensate for additional external phase delay.
VIDEO DATA INPUT PD[7:0] PXCK HSYN FIELD SDA HOST SCL INTERFACE SA1 SA2 RESET GENERAL PURPOSE PORT D[7:0]
VIDEO OUTPUTS CVBS Y C
DIGITAL VIDEO ENCODER
ANALOG INTERFACE VREF BYPASS RREF
JTAG TEST INTERFACE TDI TMS TCK TDO
GENLOCK SC_REF SC_SYNC INPUT PAL_ID
Figure 2. Logic Diagram
Modified on May/04/2000
PAGE 6 OF 44
KS0123 Data Sheet
DIGITAL VIDEO INPUT FORMAT
MULTIMEDIA VIDEO
Video data enters the encoder on pins PD[7:0]. The encoder accepts and processes digital video data in accordance with CCIR 656 and CCIR 601 standards. The input data are 8 bit multiplexed CbYCr component video, encoded in the 4:2:2 format. The input bit stream may contain End of Active Video (EAV) and Horizontal Ancillary Control (HANC) codes. The relationships of the digital video with analog timing are show in Figure 3.
CCIR 656 Timing Relationship Between Video Data and The Analog Sync Waveform
The digital active line begins at 244 words (in the 525-line standard) or at 264 words (in the 625-line standard) after the leading edge of the analog line synchronization pulse, this time being specified between half-amplitude points.
Analog line blanking
OH 16T (625) 8T (525) 24T (625) 32T (525)
TV line
64us (625) 63.5us (525)
OH
20T (625) 10T (525) Video data block 1448T
E A V 4T
HANC Digital line blanking 288T (625) 276T (525)
S A V
Multiplexed video data CB Y CR Y CB Y... 4T Digital active line 1440T
E A HANC V
Digital line 1728T (625) 1716T (525)
T: clock period 37ns nom. SAV: start of active video timing ref. code EAV: end of active video timing ref. code HANC: horizontal ancillary data
Figure 3. 656 Data Format and Timing Relationship
Modified on May/04/2000
PAGE 7 OF 44
KS0123 Data Sheet
Timing Reference Codes
MULTIMEDIA VIDEO
Each video line can have two timing reference codes, one at the beginning of the data block (start of active video SAV) and one at the end (end of active video EAV) as shown in Figure 3. Each timing reference code consists of a four byte sequence in the form FF, 00, 00 and XX as shown in Table 1. The first three words are fixed, the fourth byte contains field and line blanking information. Table 1: Video Timing Reference Codes Bit # First Second Third Fourth Notes: 7(MSB) 1 0 0 1 F= 6 1 0 0 F 5 1 0 0 V 4 1 0 0 H 3 1 0 0 P3 2 1 0 0 P2 1 1 0 0 P1 0(LSB) 1 0 0 P0 HEX FF 00 00 XX
0 during field 1 1 during field 2 0 elsewhere 1 during field blanking
V=
H = 0 in SAV 1 in EAV
P3 - - P0: Protection bits (not used by the encoder)
The encoder decodes the video timing reference code that indicates the end of active video (EAV). The EAV code shall contain the F (field) and V (blanking) bits as specified in CCIR 656. This information applies to the following video line. The encoder ignores the start of active video (SAV) timing code. The encoder uses the F bit for synchronization purposes. The transition of F bit is used to indicate the start of a new field. The polarity is also used to indicate odd and even. Additional field information is supplied by the ancillary data. The V bit is not used for synchronization. A V of ` indicates line blanking. Certain lines and half lines are blanked 1' regardless of the state of the V bit. In general if the V bit is high, then the encoder blanks the line (Figure 10 and Figure 11).
Modified on May/04/2000
PAGE 8 OF 44
KS0123 Data Sheet
Horizontal Ancillary Data Sequence (HANC)
MULTIMEDIA VIDEO
The ancillary data contains additional timing information about the following video line. Table 2 shows the sequence of the ancillary data. The HANC data, if present, should immediately follow the EAV code. The encoder decodes the ancillary data if the ancillary data type code (TT) matches the data ID code stored in the internal ANCDID register (index 07h). The LSB of the ancillary data is a parity bit. The video encoder assumes that the data is error free and always ignores this bit. Table 2: Ancillary Data Sequence Word ID ANC(2) ANC(1) ANC(0) TT Data Type Reserved Description Ancillary Data Header B7 0 1 1 TT6 (R) (R) FIELD Field number and synchronous video flag PH(1) PH(0) FR(4) FR(3) FR(2) FR(1) FR(0) Note: Subcarrier Instantaneous Phase Subcarrier Frequency (R) B6 0 1 1 TT5 (R) (R) (R) B5 0 1 1 TT4 (R) (R) (R) B4 0 1 1 TT3 (R) (R) SVF/ B3 0 1 1 TT2 (R) (R) F2 B2 0 1 1 TT1 (R) (R) F1 B1 0 1 1 TT0 (R) (R) F0 B0 0 1 1 P P P P
PHV PH6 FRV FR27 FR20 FR13 FR6
PH12 PH5 (R) FR26 FR19 FR12 FR5
PH11 PH4 (R) FR25 FR18 FR11 FR4
PH10 PH3 FR31 FR24 FR17 FR10 FR3
PH9 PH2 FR30 FR23 FR16 FR9 FR2
PH8 PH1 FR29 FR22 FR15 FR8 FR1
PH7 PH0 FR28 FR21 FR14 FR7 FR0
P P P P P P P
1. P = odd parity bit 2. R = reserved bit; ignored by video encoder
The ancillary data header (ANC) consists of three bytes which indicate the start of the ancillary data. This is in accordance with CCIR 656. The data type code is used to specify the ancillary data type. The encoder compares this value with the value programmed into the ANCDID register. If the two match, the encoder will process the ancillary data, otherwise the encoder will ignore the ancillary data. The field number bits are used by the encoder to program the field counter. The field number will be loaded to the counter if SVF/ is low and the ancillary timing reference enable (ATMEN) bit is ` . 1'
Modified on May/04/2000
PAGE 9 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
The subcarrier instantaneous phaseis a 13-bit integer which defines the phase of the reference subcarrier at the synch tip. The subcarrier frequency synthesizer phase will be reset to this number at the synch tip when both HANC datum PHV and control register APHEN are ` s. 1' Table 3: Definition of Subcarrier Instantaneous Phase subcarrier phase # 0 1 ... 8191 phase value ([3600 / 8192]) * 0 ([3600 / 8192]) * 1 ... ([3600 / 8192]) * 8191
The MPEG II system allows the 27 MHz clock frequency to vary to prevent the input buffer from overflow or underflow. When this happens the color subcarrier frequency will shift if the addend of numerical oscillator is not adjusted accordingly. If control register bit AFREN is ` the subcarrier synthersizer will select the latched HANC' 1' s subcarrier frequencydata (FR) as the addend instead of the programmable register (0x8-0xb) (Figure 6). The FR is latched if HANC datum FRV = ` . and the HANC control register' AFREN bit is set. The FR' value should be 1' s s calculated using the equation FR = NINT 2 32
* ---------- Ck
Fsc
where Fsc is the desired color subcarrier frequency, Ck is the clock frequency, and NINT is the nearest integer.
Modified on May/04/2000
PAGE 10 OF 44
KS0123 Data Sheet
VIDEO ENCODING
MULTIMEDIA VIDEO
The incoming digital video are gain and offset adjusted according to the output format, NTSC or PAL, controlled by the format register. Both the luminance and chrominance are band limited and interpolated to 27 MHz sampling rate for digital to analog conversion. The NTSC output can be selected to include a 7.5 IRE pedestal. The user can also select either 650 kHz or 1.35 MHz chrominance bandwidth The U and V components have equal . bandwidth.
Luminance Filter
The luminance signal is band-limited to 6 MHz. The filter is implemented with a 15 tap linear phase FIR filter. Figure 4 shows the frequency responses.
0 0 -5 -10 -15 -20 -0.2 -0.4 -0.6 -0.8
db
db
-25 -30 -35 -40 -45 0 2 4 6 Mhz 8 10 12
-1 -1.2 -1.4 -1.6 -1.8 -2
0
1
2
3 Mhz
4
5
6
Figure 4. Luminance Filter Frequency Response
Modified on May/04/2000
PAGE 11 OF 44
KS0123 Data Sheet
Chrominance Filter
MULTIMEDIA VIDEO
Figure 6 shows the chrominance frequency response for different bandwidth selections.
0
0
-5
-5
-10
-10
db
-15
db
-15
-20
-20
-25
0
0.5
1 Mhz
1.5
2
2.5
-25
0
0.5
1
1.5
2
2.5 Mhz
3
3.5
4
4.5
5
CHRBW = ` 0'
CHRBW = ` 1'
Figure 5. Chrominance Filter Frequency Response
Modified on May/04/2000
PAGE 12 OF 44
KS0123 Data Sheet
COLOR SUBCARRIER GENERATION
MULTIMEDIA VIDEO
The chrominance signals are modulated onto a subcarrier. The nominal subcarrier frequency is determined by 4 registers (08h - 0Bh). The subcarrier generation also contains Subcarrier Horizontal Synch Phase, SCH, offset control (Reg 0Ch - 0Dh), and genlock functions to support digital/analog video multiplexing.
PH FR
Figure 6. Fsc Synthersizer The color subcarrier synthesizer can operate in 3 modes: (a) free running mode, (b) HANC genlock mode, and (c) analog genlock mode. (a). In the free running modethe color subcarrier frequency is programmed via the host interface. The 4 field or 8 field SCH phase are maintained. The nominal frequency register values for different video standards are listed in Table 4. Table 4: Register Values for Subcarrier Frequencies Standard NTSC PAL-B,G,H,I PAL-M PAL-N Frequency Register Subcarrier Frequency(MHz) FREQD FREQC FREQB FREQA 3.57954545 4.43361875 3.57561189 3.58205625 43 54 43 43 E0 13 CD ED F8 15 DF 28 3E 96 C7 8D
(b). In the HANC genlock modethe subcarrier frequency, FR, and instantaneous phase, PH, information are sent to the encoder via the HANC data. The frequency and phase values are updated during the synch tip. (c). If analog genlock modeis selected the subcarrier synthesizer is locked to an external reference signal, fsc or 4 fsc. An external PAL_ID signal is required to control the PAL phase alternation. The PLL has 2 kHz pull in range.
Analog Genlock Circuit
The analog genlock circuit will lock the frequency and phase of the subcarrier synthesizer to an external reference signal. To activate the genlock circuit, first program the nominal FREQD-A value then set GENEN = 1.The external
Modified on May/04/2000
PAGE 13 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
reference signal is applied to the SC_REF input pin. The frequency of this squarewave is either Fsc or 4*Fsc (program the 4FSCS bit accordingly). When using a 4*Fsc input, the SC_SYNC resets the internal divider' phase s to the 0 count state as shown in Figure 7. The SCHM and SCHL registers can be programmed to compensate for the propagation delay from the phase detector input to the DAC output. 1/(4 *SC_REF)
SC_REF(== 4fsc)
tPWH;SC_REF
tSU;SC_SYNC
SC_SYNC
tHD;SC_SYNC
internal divided by 4 counter output
Figure 7. SC_REF and SC_SYNC Input Timing
PAL_ID Input
The PAL_ID input is used by the analog genlock circuit to control the PAL chroma V-axis inversion. PAL_ID is only recognized when GENEN = 1 and the video format is PAL. PAL_ID is low for lines where the color burst phase is 135, and high for lines where the color burst phase is -135o. PAL_ID is sampled and its value is used on the following line. The PAL_ID should be valid during the time interval corresponding to video samples 1440 to 1449. See Figure 8 for the PAL_ID timing requirement.
Pixel Data Input (PD[7:0])
Sample number 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 Y 719 $FF $00 $00 $XX EAV Sequence
tDUR;PAL_ID
Ancillary Data...
PAL_ID Stable D7 Input (PAL_ID)
Figure 8. PAL_ID Input Timing
Modified on May/04/2000
PAGE 14 OF 44
KS0123 Data Sheet
SC_SYNC and PAL_ID Pins
MULTIMEDIA VIDEO
The SC_SYNC and PAL_ID inputs are shared with the D6 and D7 general purpose I/O pins respectively. To configure D6 as the SC_SYNC input, the register value of [DDR6, GENEN, 4FSCS] must be set to [0, 1, 1]. To activate the PAL_ID input, the register value of [DDR7, GENEN, FORMAT] must be set to [0, 1, 01] or [0, 1, 10].
SCH Phase Control
The video encoder maintains a constant 4-field (NTSC) or 8-field (PAL) sub-carrier/horizontal synch phase relationship in the free running mode by resetting the subcarrier synthesizer every 8 fields. In all mode of operations the SCH phase can be adjusted via SCHM and SCHB registers to compensate external phase delay.
VIDEO TIMING GENERATION
The decoder can operate either in master mode or slave mode. In the salve mode, the encoder extracts the horizontal and vertical sync timing, blanking, and field count information from the timing reference codes (EAV) in the pixel data stream. Additional timing data may be extracted from horizontal ancillary (HANC) data. The ancillary data definition is shown in Table 2. In the master mode, the encoder generates horizontal synch (HSYN) and field (FIELD) signals. The FIELD signal is high for the even field period. To enable the master mode the direction register DDR3 and DDR2 must be set to ` s and the reserved register 0x83 must be set to 0x18. 1'
Figure 9. Master Mode Video Interface Timing
Modified on May/04/2000
PAGE 15 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
Analog Fields 1&3 F=0 (blanked, V=X) Digital Fields 1&3
V=0 (active video) or V=1 (blanked)
524
525 1 2 3 4 5 6 7 8 9
10
11-19
20
21
22
COMP SYNC VVSYNC\
Analog Fields 2&4 (blanked, V=X) 262 263 264 265 266 267 268 269 270 271 272 F=1 Digital Fields 2&4
V=0 (active video) or V=1 (blanked) 274281
273
282
283
284
COMP SYNC VVSYNC\
Figure 10. NTSC Vertical Interval
Modified on May/04/2000
PAGE 16 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
(blanked, V=X)
F=0 Analog and digital Fields 1,3,5 & 7
V=0 (active video) or V=1 (blanked)
621
622 623
624 625
1
2
3
4
5
6
7
8-22
23
24
25
COMP SYNC
VVSYNC\
(blanked, V=X)
F=1 Digital Fields 2,4,6 & 8 Analog Fields 2,4,6 & 8
V=0 (active video) or V=1 (blanked) 322334
309
310 311 312 313 314 315 316 317 318
319
320
321
335
336
COMP SYNC VVSYNC\
Figure 11. PAL-B, G, H, I, N Vertical Interval
Modified on May/04/2000
PAGE 17 OF 44
KS0123 Data Sheet
Internal Test Ramp Signal Generation
MULTIMEDIA VIDEO
The modulated ramp test signal is enabled through the host interface by setting the RAMPEN bit high. Additionally the PDEN must be set to zero to disable the pedestal and reserved registers 0x10 and 0x11 be set to ` s as well. 0' The ramp signal can be used for differential gain and phase measurements. The luminance component ramps from blanking level (0 IRE) to maximum white (100 IRE). The chroma has 40 IRE constant amplitude.
Macrovision Anti-taping
The Macrovision anti-taping revision 6 for PPV application is implemented. For more information please contact Samsung LA Design Center.
Power on Reset
The reset line is an active low signal that is used to initialize the device. Setting RESET low sets all internal state machines and control registers to their initial conditions, disables all digital and analog outputs (high impedance), and places the encoder in a power-down mode. The reserved register (0x10 - 0x1f) must be set to zero manually for proper operation.
Modified on May/04/2000
PAGE 18 OF 44
KS0123 Data Sheet
General Purpose I/O Port and Other Signals
MULTIMEDIA VIDEO
Pins D7 through D0 form a general purpose I/O port where some pins have a dual function. The list below indicates the pin functionality. The directions of the I/Os are controlled by the DDR register. Table 5: General Purpose I/O Functions Pin D7 / PAL_ID D6 / SC_SYNC D5 - D4 D3/HSYN D2/FIELD D1/CLAMP D0/CSYN Function General purpose I/O port; also used as the PAL_ID (PAL phase identification) signal input in the analog genlock mode. (see page 15) General purpose I/O port; also used as the SC_SYNC (subcarrier sync) signal input.(see page 15) General purpose I/O ports only. General purpose I/O port in slave mode. HSYN output in Master mode.(see page 15) General purpose I/O port in slave mode. FIELD output in Master mode.(see page 15) General purpose I/O port; also used as the CLAMP (clamp gate) output signal. General purpose I/O port; also used as the CSYN (composite sync) output signal.
The CSYN (composite sync) output is shared with D0 pin, and is programmed with the DDR0 and CSDIS control bits as shown below. Table 6: Control of Pin D0/CSYN
DDR0 CSDIS
reg. 0 1 1
reg. X 1 0
GPP0 read value Logic state applied to D0 not defined not defined
Effect of a GPP0 write on D0/CSYN no effect outputs GPP0 logic state no effect
Configuration general purpose input general purpose output CSYN output
The CLAMP output is shared with D1 pin, and is programmed with the DDR1 and CLMDIS control bits as shown below. Table 7: Control of Pin D1/CLAMP
DDR1 CLMDIS
reg 0 1 1
reg X 1 0
GPP1 read value Logic state applied to D1 not defined not defined
Effect of a GPP1 write on D1/CLAMP no effect outputs GPP1 logic state no effect
Configuration general purpose input general purpose output CLAMP output
Modified on May/04/2000
PAGE 19 OF 44
KS0123 Data Sheet
D/A Converters
MULTIMEDIA VIDEO
The analog outputs of the encoder come from the three 10-bit D/A converters, operating at a 27 MHz clock rate. The outputs can drive standard video levels into a 75 or 37.5 ohm load. An internal voltage reference can be used to provide reference current for the three D/A converters. For accurate video levels, an external fixed or variable voltage reference source can be used. The video signal levels from the encoder may be adjusted to overcome the insertion loss of analog low-pass output filters by varying RREF or VREF. There are three analog video outputs, one composite, one luminance, and one chrominance. The composite and S-video DACs can be disabled independently to save power. The components required for the DAC voltage and current reference is shown below. The 787 ohm resistor should be used for single end 75 ohm termination while the 394 ohm resistor for double end 75 ohm termination.
VDD 0.1F Vref VREF 0.1F COMP
+ _
787 (394)
IREF
Figure 12. Voltage and Current Reference Components Two reconstruction filters are suggested for the output of the D/A converters. The one shown in Figure 13 is designed to be a single 75 ohm load to the D/A output; while the one shown in Figure 14 is for the double ended termination.
10pF 1%
5.6 H 5%
DAC Output 100 1% 180pF 1%
Video Op Amp (Av = 2)
+ _
100pF 1% 301 1% 1K 1K
75
Output
75
Figure 13. Reconstruction Filter for Single Ended Termination
Modified on May/04/2000
PAGE 20 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
2.0H
1.3H
75
100pF
300pF
100pF
75
Figure 14. Reconstruction Filter for Double Ended Termination
Modified on May/04/2000
PAGE 21 OF 44
KS0123 Data Sheet
Serial Host Interface
MULTIMEDIA VIDEO
The internal control registers of the encoder are read and written via a two wire serial port. The two wire port consists of a serial I/O data line (SDA) and a clock (SCL) input. Each of the SDA and SCL line is connected to +VDD with a pull-up resistor. The data on the SDA line must be stable when the clock (SCL) is high. Data can only change while SCL is low. Transitions on SDA while SCL is high indicate start (high to low transition) and stop (low to high) conditions. When both lines are high, the bus is considered to be free. Communication consists of five parts: the START signal, slave address transmission, (register address transmission), data transfer, and the STOP signal. When the bus is free, a master initiates communication by sending a start signal (high to low of SDA while SCL is high). The first byte transferred after the start signal is a seven bit long slave address followed by the eighth R/W bit. The R/W bit indicates the direction of data transfer (high = read). If the slave address matches that of the encoder (set with pins SA1 and SA2), the encoder will acknowledge by pulling SDA low during the 9th clock. The bytes following the slave address are the data to or from the encoder. Each byte is 8 bits long with the MSB transferred first. Each byte is followed by an acknowledge by the receiving device by pulling the SDA line low during the 9th clock. A stop signal is created when the master sends a low to high on the SDA line with SCL high. Figure 15 shows the data transfer and acknowledge on the serial bus.
SDA MSB acknowledgment acknowledgment signal from receiver signal from receiver clock line held low while byte complete, interrupts are serviced interrupt in receiver 2 7 8 9 ACK 1 2 38 9 ACK
SCL 1 S START CONDITION SERIAL DATA TRANSFER P STOP CONDITION
Data output by transmitter Data output by receiver SCL from master not acknowledge acknowledge S 1 2 8 9 clock pulse for acknowledgment
START CONDITION
ACKNOWLEDGE ON THE SERIAL BUS
Figure 15. Serial Bus Timing
Modified on May/04/2000
PAGE 22 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
The master must specify a base address (BAR) when it accesses the encoders registers. The base address is written to the encoder following the slave address when the R/W bit is low. For encoder register writes, data bytes are sent to the control registers starting with the register selected by the BAR and incremented by one address for each additional data byte transferred (auto increment). To read data from the encoder control registers, two data transfer operations are required. The first one writes the BAR (R/W = 0) and the second one is to read the data (R/ W = 1). Figure 16 explains the data transfer operations. Write to Control Registers START signal Slave address (R/W = 0) Base address (BAR) Data transfer (master to encoder, one or more bytes) STOP signal Read from Control Registers START signal Slave address (R/W = 0) Base address (BAR) STOP signal START signal Slave address (R/W = 1) Data transfer (encoder to master, one or more bytes) STOP signal
Figure 16. Typical Write and Read Operations Two address select pins are used to select one of four slave addresses, the slave address is seven bits long. Refer to Table 8 for the possible slave addresses. Table 8: Serial Port Slave Addresses A6 0 0 0 0 A5 0 0 0 0 A4 0 0 0 0 A3 1 1 1 1 A2 1 1 1 1 A1 (SA2) 0 0 1 1 A0 (SA1) 0 1 0 1
The serial port timing parameters are shown below, refer to the timing tables at the end of this data sheet for the values.
Modified on May/04/2000
PAGE 23 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
STOP START
REPEATED START
STOP
SDA tBUF tLOW tR SCL tHD;STA tHD;DAT tSU;DAT tSU;STA tF tHIGH tHD;STA
tSU;STO
Figure 17. Serial Port Timing Parameters
JTAG Test Interface
The encoder includes a 4-line JTAG test interface port (as modified herein), providing access to all digital input/ output data pins except the JTAG test port pins, analog pins, power and ground. This is provided to facilitate component and board-level testing. Table 9 shows the sequence of the test registers. The register number indicates the order in which the register data is loaded and read. The scan is 23 registers long. The test data input (TDI) and test mode select (TMS) inputs are referred to the rising edge of the test clock (TCK) input. The test data output (TDO) is referred to the falling edge of TCK. Table 9: JTAG Sequence List
JTAG Reg
Pin RESET PXCK PD7 PD6 PD5 PD4 PD3 PD2
JTAG Reg
Pin PD1 PD0 SA2 SA1 SDA SCL SC_REF D7
JTAG Reg
Pin D6 D5 D4 D3 D2 D1 D0
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23
Modified on May/04/2000
PAGE 24 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
The JTAG test port timing is shown below, refer to the timing tables at the end of this data sheet for the values. tPWLTCK tPWHTCK
TCK
tSTP tHTP
TDI TMS
tHOTP
tDOTP
TDO
Figure 18. JTAG Test Port Timing
Modified on May/04/2000
PAGE 25 OF 44
KS0123 Data Sheet
CONTROL REGISTERS
MULTIMEDIA VIDEO
The encoder is controlled by a set of registers which allow adjustment of its operating parameters. The registers are written to and read from via the serial bus interface. Unless otherwise specified, all registers are read/write registers. The suffix "h" denotes hex numbers. In the detailed register description, the default value is followed by an "*". Table 10: Control Registers Index 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10-FFh Mnemonic PIDC PIDB PIDA REVID GCR VOCR HANC ANCDID FREQD* FREQC* FREQB* FREQA SCHM SCHL GPP DDR Default 91h 88h 79h 01h 00h 00h 00h 00h 43h E0h F8h 3Eh 00h 00h 00h 00h Description Part ID Register C (read only) Part ID Register B (read only) Part ID Register A (read only) Part Revision Number (read only) Global Control Register Video Output Control Register Horizontal Ancillary Data Control Register Ancillary Data ID Register Subcarrier Frequency Byte 3 (MSBs) Subcarrier Frequency Byte 2 Subcarrier Frequency Byte 1 Subcarrier Frequency Byte 0 (LSBs) Subcarrier Phase Offset MSBs Subcarrier Phase Offset LSBs General Purpose Port General Purpose Port Data Direction Control Reserved
* double buffer registers; newly loaded FREQD-B' values will not take effect until s FREQA has been updated.
Modified on May/04/2000
PAGE 26 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
Part ID Register
Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
00h 01h 02h
PIDC PIDB PIDA
PID23 PID15 PID07
PID22 PID14 PID06
PID21 PID13 PID05
PID20 PID12 PID04
PID19 PID11 PID03
PID18 PID10 PID02
PID17 PID09 PID01
PID16 PID08 PID00
PID[23:00]
Chip part ID number. This is a read only set of registers. The numbers contained in the registers are: PIDA = 79h PIDB = 88h PIDC = 91h.
Part Revision ID Number
Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
03h
REVID
REVID7
REVID6
REVID5
REVID4
REVID3
REVID2
REVID1
REVID0
REVID
Chip revision ID number. This read only register is used to indicate the silicon revision level number.
Modified on May/04/2000
PAGE 27 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
Global Control Register
Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
04h
GCR
4FSCS
GENEN
YCDLY
RMPEN
YCDIS
CDIS
FMT1
FMT0
4FSCS
Subcarrier select. 1 SC_REF frequency equals 4 times color subcarrier frequency. 0 SC_REF frequency.* Genlock (to external reference) mode enable. 1 The encoder will lock its internal subcarrier synthesizer to an external reference subcarrier input. 0 Normal operation.* Luma to chroma delay. This may be used to compensate for luma and chroma group delay variations of the external analog lowpass filter 1 The luminance signal is delayed by 37 nS relative to the chrominance signal. 0 Normal operation.* Modulated ramp enable. 1 The encoder outputs a modulated ramp for differential phase and gain measurements. 0 Normal operation.* Y/C output disable. 1 The Y and C outputs are disabled, and in a high impedance state. 0 Normal operation.* Composite output disable. 1 The CVBS output is disabled, and in a high impedance state. 0 Normal operation.* Video format select. Note: the subcarrier frequency, pedestal level, and chroma bandwidth are programmed individually and are independent of the format register. 00 NTSC.* 01 PAL-B,G,H,I,N(Argentina). 10 PAL-M. 11 reserved.
GENEN
YCDLY
RMPEN
YCDIS
CDIS
FMT
Modified on May/04/2000
PAGE 28 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
Video Output Control Register
Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
05h
VOCR
CSDIS
CLMDIS
CHRBW
SYNDIS
BURDIS
LUMDIS
CHRDIS
PEDEN
CSDIS
Composite sync (COMPS) output disable. Control depends on the state of the DDR0 bit. See Table 6. Clamp gating signal (CLAMP) output disable. Control depends on the state of the DDR1 bit. See Table 6. Chroma bandwidth select. 1 Chrominance bandwidth is 1.3 MHz. 0 Chrominance bandwidth is 650 kHz.* Sync disable. When active, the horizontal and vertical sync pulses are disabled, and the encoder will output blanking level during this time. Active video and color burst are not affected. 1 Disable active. 0 Normal operation.* Chroma burst (color burst) disable. Chroma data at the output is not affected by this register. 1 The chroma reference burst output is disabled. 0 Normal operation, burst is enabled.* Luminance input disable. Color burst and sync are not affected by this register. 1 Luminance data into the IC are forced to black level. 0 Normal operation. Incoming luminance data (Y) is enabled.* Chroma input disable. The color burst output is not affected by this register. 1 Chroma data into the IC is suppressed, enabling monochrome operation. 0 Normal operation. Incoming chroma (C) data is enabled.* Pedestal (setup) enable. When active, a 7.5 IRE (nominal) pedestal is inserted into the output video for lines 23-262 and 286-525 only. The gain factors are adjusted to keep chrominance from exceeding prescribed levels. Lines 1-22 and 263-285 don' contain setup. This register is valid for t NTSC and PAL-M only. 1 Active (use only for NTSC and PAL-M). 0 Pedestal (setup) is disabled for all lines. The black and blanking levels are the same.*
CLMDIS
CHRBW
SYNDIS
BURDIS
LUMDIS
CHRDIS
PEDEN
Note: when SYNDIS=BURDIS=LUMDIS=CHRDIS=1, then the encoder outputs fixed DC at the blanking level.
Modified on May/04/2000
PAGE 29 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
Horizontal Ancillary Data (HANC) Control Register
Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
06h Reserved NOLCK
HANC
Reserved
NOLCK
FIELD2
FIELD1
FIELD0
AFREN
APHEN
ATMEN
Reserved. Do Not Use. Genlock status. Read only. NOLCK is valid only when GENEN = 1. 1 Indicates that lock has not been achieved. 0 Indicates that the internal subcarrier synthesizer is locked to the external reference.* Field identification number Read only. These 3 bits indicate the digital field number. 000 Field 1 001 Field 2 010 Field 3 011 Field 4 100 Field 5 101 Field 6 110 Field 7 111 Field 8 Ancillary frequency data enable. When GLKEN = 1 (genlock to external reference), the encoder may assume that AFREN will be set to 0 by the firmware. In this case, the FREQ register value will be controlled by the genlocking circuit. 1 The encoder programs the subcarrier FREQ register from the ancillary data stream (depending on the state of the FRV bit). 0 The FREQ register is programmed through the microprocessor interface.* Ancillary phase data enable. When GENEN = 1 (genlock to external reference), the encoder may assume that APHEN will be set to 0 by the firmware. In this case, the PHASE register value will be controlled by the genlocking circuit. 1 The encoder programs the subcarrier PHASE register from the ancillary data stream (depending on the state of the PHV bit). 0 A value of 0 is used for the PHASE register.* Ancillary timing reference data enable. 1 The encoder uses the timing reference data contained in the ancillary data stream (FIELD and SVF/). 0 The ancillary timing reference data is ignored.*
FIELD2-0
AFREN
APHEN
ATMEN
Modified on May/04/2000
PAGE 30 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
Ancillary Data ID Register
Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
07h
ANCDID
ANCD7
ANCD6
ANCD5
ANCD4
ANCD3
ANCD2
ANCD1
PARITY
ANCD[7:1] The seven bits, ANCD7 through ANCD1, determine the data ID. The encoder uses the data ID to determine if the ancillary data it is receiving is meant for the encoder. PARITY Bit 0 is an odd parity bit for the ancillary data ID byte mentioned above. The encoder does not use this bit.
Subcarrier Frequency Register
Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
08h 09h 0Ah 0Bh
FREQD FREQC FREQB FREQA
FRQ31 FRQ23 FRQ15 FRQ07
FRQ30 FRQ22 FRQ14 FRQ06
FRQ29 FRQ21 FRQ13 FRQ05
FRQ28 FRQ20 FRQ12 FRQ04
FRQ27 FRQ19 FRQ11 FRQ03
FRQ26 FRQ8 FRQ10 FRQ02
FRQ25 FRQ7 FRQ09 FRQ01
FRQ24 FRQ16 FRQ08 FRQ00
FRQ[31:00] These registers hold the 32 bit subcarrier frequency value. The FREQD-B registers are double buffered; the newly loaded msb values will not take effect until the lsb (FREQA) has been written.
Subcarrier Phase Offset Register
Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0Ch 0Dh
SCHM SCHL
SCH15 SCH07
SCH14 SCH06
SPH13 SCH05
SCH12 SCH04
SCH11 SCH03
SCH10 SCH02
SCPH9 SCH01
SCPH8 SCH00
SPH[15:00]
These registers hold the static subcarrier phase offset. This is used to adjust the phase of the subcarrier relative to the 50% point of the leading edge of hsync (SCH phase). The nominal value is 0. This register is used to compensate for delays external to the encoder.
Modified on May/04/2000
PAGE 31 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
General Purpose Port
Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0Eh
GPP
GPP7
GPP6
GPP5
GPP4
GPP3
GPP2
GPP1
GPP0
GPP7 - GPP0
Registers GPP7 through GPP0 are used to read and write to I/O pins D0 through D7. The direction of flow of these pins is set by the data direction register. Note that pins D7, D6, D1, and D0 are shared with other signals. GPP7 = D7 I/O Pin. GPP6 = D6 I/O Pin. GPP5 = D5 I/O Pin. GPP4 = D4 I/O Pin. GPP3 = D3 I/O Pin. GPP2 = D2 I/O Pin. GPP1 = D1 I/O Pin. GPP0 = D0 I/O Pin.
General Purpose Port Data Direction Control
Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0Fh
DDR
DDR7
DDR6
DDR5
DDR4
DDR3
DDR2
DDR1
DDR0
DDR7 - DDR0
Registers DDR7 through DDR0 are used to control the direction of data flow of I/O pins D0 through D7. Setting DDR(i) (where i = 7 to 0) to a low will make that pin an input. Setting DDR(i) high will make that pin an output. DDR7 = Data direction control for pin D7. DDR6 = Data direction control for pin D6. DDR5 = Data direction control for pin D5. DDR4 = Data direction control for pin D4. DDR3 = Data direction control for pin D3. DDR2 = Data direction control for pin D2. DDR1 = Data direction control for pin D1. DDR0 = Data direction control for pin D0.
Modified on May/04/2000
PAGE 32 OF 44
KS0123 Data Sheet
ABSOLUTE MAXIMUM RATINGS
Characteristics Supply Voltage (Measured to GND) Digital Input Applied Voltage2 Digital Input Forced Current3,4 Digital Output Applied Voltage2 Digital Output Forced Current3,4 Digital Short Circuit Duration (single high output to VSS) Analog Short Circuit Duration (single output to VSSA) Ambient Operating Temperature Range Storage Temperature Range Junction Temperature Soldering Temperature (10 sec., 1/4" from pin) Vapor Phase Soldering (1 min.) Storage Temperature Symbol VDD VI AI VO AO TDSC TASC Ta Tstg Tj Tsol Tvsol Tstor -65 -60 -65 Min -0.5 GND-0.5 -100 GND-0.5 -100
MULTIMEDIA VIDEO
Max +7.0 VDD+0.5 100 VDD+0.5 100 1 infinite +130 +150 +150 +300 +220 +150
Unit V V mA V mA sec sec C C C C C C
Notes: 1. Absolute maximum ratings are limiting values applied individually, while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied. 2. Applied voltage must be current limited to specified range, and measured with respect to VSS. 3. Forcing voltage must be limited to a specified range. 4. Current is specified as conventional current, flowing into the device.
RECOMMENDED OPERATING CONDITIONS
Unless otherwise specified, all specifications shall be met over the operating temperature range (0 to 70 oC, case), with a digital supply voltage (VDD) of 5.00 VDC 5% and analog supply voltage (VDDA) of 5.00 VDC 5%. Characteristics Supply Voltage Ambient Operating Temperature Range Symbol VDD Ta Min 4.75 0 Typ 5 Max 5.25 70 Unit V C
Modified on May/04/2000
PAGE 33 OF 44
KS0123 Data Sheet
DC ELECTRICAL CHARACTERISTICS
Characteristics Total Power Supply Current (Digital Plus Analog1, FPXCK = 27 MHz) Total Power Supply Current (DACs Disabled2, FPXCK = 27 MHz) Digital Input Voltage, Logic HIGH TTL Compatible Inputs Digital Input Voltage, Logic HIGH Serial Port (SDA, SCL) Digital Input Voltage, Logic LOW TTL Compatible Inputs Digital Input Voltage, Logic LOW Serial Port (SDA, SCL) Digital Input Current, Logic HIGH (VIN= 4.0 V) Digital Input Current, Logic LOW (VIN=0.4 V) Digital Input Capacitance(f=1MHz,VIN=2.4 V) Digital Output Voltage, Logic HIGH CMOS Compatible Outputs (IOH=-1 mA) Digital Output Voltage Logic LOW CMOS Compatible Outputs (IOL=4.0 mA) Digital Output Voltage Logic LOW Serial Port (SDA) (IOL=3.0 mA) Digital Output Voltage Logic LOW Serial Port (SDA) (IOL=6.0 mA) Hi-Z Leakage Current, HIGH (VDD=Max, VIN=VDD) Hi-Z Leakage Current, LOW (VDD=Max, VIN=VSS) Digital Input Capacitance (TA=25 oC, F=1 MHz) Digital Output Capacitance (TA=25 oC, F=1 MHz) Symbol IDD IDDQ VIH VIH VIL VIL IIH IIL CIN VOH VOL VOL1 VOL2 IOZH IOZL CI CO 3.7 VSS VSS VSS 2.0 0.7 VSS VSS Min Typ
MULTIMEDIA VIDEO
Max 160 110 VDD VDD 0.8 0.3 10 -10 7 VDD 0.4 0.4 0.6 10 -10 8 10
Unit mA mA V V V V A A pF V V V V A A pF pF
Notes: 1.Maximum IDDD and IDDA with VDD = VDDA = +5.25 VDC and TA = 0 to 70 oC. D/A converters loaded with RL = 75 . 2. IDDQ when RESET = HIGH, CDIS = YCDIS = HIGH (DACs disabled).
Modified on May/04/2000
PAGE 34 OF 44
KS0123 Data Sheet
PIXEL DATA PORT
Characteristics Master Clock Rate (PXCK input) Pixel Rate (FPCK = FPXCK /2) PXCK Pulse Width, HIGH PXCK Pulse Width, LOW PXCK Rise Time (10% to 90% points) PXCK Fall Time (10% to 90% points) PD7-0 Setup Time PD7-0 Hold Time Process Delay (from PD input to DAC inputs) Symbol FPXCK FPCK TPWH;PXCK TPWL;PXCK TRP TFP TSU;PD THD;PD TPD 5 3 48 10 14.5 Min 26.9999 Typ 27.0 13.5 18.5 18.5
MULTIMEDIA VIDEO
Max 27.0001
Unit MHz Mpps ns ns
TBD TBD
ns ns ns ns PXCX Periods
Note:
Timing reference points are at the 50% level. Digital CLOAD < 40 pF.
Modified on May/04/2000
PAGE 35 OF 44
KS0123 Data Sheet
SERIAL MICROPROCESSOR PORT
Characteristics SCL Clock Frequency (FPXCK = 27.0 MHz) SCL Clock LOW period SCL Clock HIGH period SDA & SCL input rise time SDA & SCL input fall time SDA output fall time from VIH MIN to VIL MAX; bus capacitance = 10 pF to 400 pF. Up to 3 mA current at VOL1. SDA output fall time from VIH MIN to VIL MAX; bus capacitance = 10 pF to 400 pF. Up to 6 mA current at VOL2. Bus free time between a STOP and START condition. Hold time for START or repeated START condition. After this period, the first clock pulse is generated. Setup time for a repeated START condition. Data Setup Time Data Hold Time Setup Time for a STOP condition SDA output load capacitance Note: 1. All timing values are referred to VIH MIN and VIL MAX levels. Symbol FSCL TLOW THIGH TR TF TOF1 1.0 0.48 Min Typ Note 3
MULTIMEDIA VIDEO
Max 500
Unit kHz
s s
240 240 200 ns ns ns
TOF2
200
ns
TBUF THD;STA
1.0 0.48
s s s
ns 0.72
TSU;STA TSU;DAT THD;DAT TSU;STO CB
0.48 80 0 0.48 400
s s
pF
2. Timing specifications have been obtained by scaling the Philips I2C Fast Mode Bus specs by 80%. 3. The nominal FSCL to be used by this device is: FSCL = (FPXCK/56) = (27.0MHz/56) = 482.143 KHz.
Modified on May/04/2000
PAGE 36 OF 44
KS0123 Data Sheet
JTAG INTERFACE
Characteristics Test Clock (TCK) Rate TCK Pulse Width, LOW TCK Pulse Width, HIGH Test Port Setup Time (TDI, TMS) Test Port Hold Time (TDI, TMS) Output Delay, TCK to TDO Valid Output Hold Time, TCK to TDO Valid Symbol FTCK TPWLTCK TPWHTCK TSTP THTP TDOTP THOTP 5 10 10 10 0 Min Typ
MULTIMEDIA VIDEO
Max 10
Unit MHz ns ns ns ns
30
ns ns
Note: Timing reference points are at the 50% level. Digital CLOAD < 40 pF.
MISCELLANEOUS DIGITAL SIGNALS
Characteristics RESET/ Active (LOW) Time SC_SYNC Setup Time SC_SYNC Hold Time PAL_ID Setup Time PAL_ID Hold Time PAL_ID Duration Symbol TSR TSU;SC_SYNC THD;SC_SYNC TSU;PAL_ID THD;PAL_ID TDUR;PAL_ID 10 0 10 0 9 Min Typ 1 Max Unit
s
ns ns ns ns PXCK periods
Note: Timing reference points are at the 50% level. Digital CLOAD < 40 pF.
Modified on May/04/2000
PAGE 37 OF 44
KS0123 Data Sheet
ANALOG (DAC) OUTPUTS
Characteristics DAC Resolution Power Supply Rejection Ratio (Full scale output) CBYPS = 0.1F, f = DC to 1MHz, VRIP = 100 mVp-p Voltage Reference Output VREF Output Impedance DAC Gain Factor KDAC Imbalance Between DACs DAC Reference Current (RREF = Nom.) Reference Resistor (VRO = Nom.) Blanking Level Output Voltage (NTSC and PAL modes) Video Output Compliance Voltage Video Output Resistance Video Output Capacitance (IOUT=0 mA, f=1 MHz) Total Output Load Resistance DAC Output Current Risetime (10% to 90% of full scale) DAC Output Current Falltime (90% to 10% of full scale) Analog Output Delay Symbol RES PSRR Min 10 TBD Typ
MULTIMEDIA VIDEO
Max
Unit bits dB
VRO ZR KDAC KIMBAL IREF RREF VBLANK VOC ROUT COUT RL TR TF TDOV
1.112 1000 10.31 -5
1.235
1.359
V
10.85
11.39 +5 % mA V 1.6 V k pF ns ns ns
1.569 787 0.300 -0.3 15 15-25 75 2 2 20
Notes: Timing reference points are at the 50% level. Analog CLOAD < 10 pF Digital CLOAD < 40 pF.
GENLOCK PERFORMANCE
Parameter Locking Range SC_REF Duty Cycle Lock Time Jitter Units +2 kHz 50 + 10% 40 lines maximum 2 deg. p-p maximum
Modified on May/04/2000
PAGE 38 OF 44
KS0123 Data Sheet
Video Performance
MULTIMEDIA VIDEO
The encoder meets the requirements listed in the table below when configured using the application circuit of Figure 14. The test methods and test signals meet the requirements of NTC Report No. 7 or EIA/TIA-250. A Tektronix TSG1001 Programmable TV Generator and a Tektronix VM700A Video Measurement Set are used for measurement verification.
VIDEO PERFORMANCE CHARACTERISTICS
Test Name Amplitude Response vs. Frequency Differential Gain Differential Phase Chroma Nonlinear Gain Distortion Chroma Nonlinear Phase Distortion Chroma-to-Luma Intermodulation Chroma/Luma Gain Equality Symbol Test Waveform Min Typ Max 0.25 1.5 1.0 1.0 1.0 1 97.5 102.5 Unit dBp-p % p-p deg p-p IRE deg IRE %
AMPRESP Multiburst to 4.2 MHz
DG DP CNLG CNLP CLIMD CLGI
Modulated Staircase or Ramp
(NTC-7 Composite)
Modulated Staircase or Ramp
(NTC-7 Composite)
Three Level Chroma Signal
(NTC-7 Combination)
Three Level Chroma Signal
(NTC-7 Combination)
Three Level Chroma Signal
(NTC-7 Combination)
12.5T Modulated Pulse
(NTC-7 composite) CHRBW = HIGH (1.3 MHz) YCDELAY = LOW.
Chroma/Luma Delay Inequality. (Analog filter delay excluded)
CLDI
12.5T Modulated Pulse NTC-7 composite)
CHRBW = HIGH (1.3 MHz) YCDELAY = LOW.
0
5
ns
Luma Nonlinear Distortion Noise Level1 Noise Level2 Chroma AM Noise Chroma PM Noise Field Time Waveform Distortion Line Time Waveform Distortion Long Time Waveform Distortion: Initial Peak Overshoot Peak Overshoot after 5 seconds
LNLD NOISE1 NOISE2 CAMN CPMN FTWD LTWD LOTWD
5-Step Unmodulated Staircase 100% Unmodulated Ramp 100% Unmodulated Ramp Red Field, 500 kHz BW Red Field, 500 kHz BW Field Square Wave 18 S 100 IRE Bar (NTC-7 Composite) 10% / 90% APL Bounce
2.5 -61 -72 -56 -58 1.5 0.5
% dBrms dBrms dBrms dBrms IREp-p IREp-p
15 1.5
IRE
Modified on May/04/2000
PAGE 39 OF 44
KS0123 Data Sheet
VIDEO PERFORMANCE CHARACTERISTICS
Test Name Short Time Waveform Distortion Line-by-Line DC Offset Dynamic Gain Symbol STWD LDCOFF DYNG Test Waveform 100 IRE Step, 125 ns rise time
(NTC-7 COmposite)
MULTIMEDIA VIDEO
Min
Typ
Max 1
Unit % SD IRE IRE
10% / 90% APL Bounce
-1 -1
1 1
Notes: 1. Noise level is unified weighted, 10 kHz to 5.0 MHz bandwidth, with Tilt Null ON measuring using VM700 "Measure Mode". A trap at the color burst frequency may be used. 2. Noise level is unified weighted, 10 kHz to 5.0 MHz bandwidth, measured using VM700 "Auto Mode".
Modified on May/04/2000
PAGE 40 OF 44
KS0123 Data Sheet
KS0123 Design Hints
MULTIMEDIA VIDEO
Figure 19 describes power supply decoupling. A clean power supply is crucial for proper operation of the device. Noise on the power supply lines will couple onto the analog inputs and ultimately result in poor picture quality. The digital and analog VDD supplies should be separately decoupled with external filter components. This is achieved by using a ferrite bead with a capacitor on either side. In addition to this filter, 0.1F capacitors should be placed by each IC power pin. Additional decoupling can be achieved by placing 0.01F capacitors in parallel with the 0.1F capacitors. These components should be located close to the ENCODER device. The ENCODER ideally should be located near the input power supply and close to the video inputs connectors.
Board Regulated +5V Power
22F 0.1F FERRITE BEADS
VDD 22F 0.1F Place 0.1F caps near each IC power pin 22F 0.1F 0.1F
ENCODER
VDDA 22F
All Grounds are connected together
Figure 19. Power Supply Filtering A number of different ferrite beads can be used for power supply decoupling. Wire wound ferrite beads are generally large, but offer greater current capacity and higher impedance for a given frequency (this depends on the ferrite material and number of windings). A larger current capacity is useful for decoupling many components, such as a board power supply. Bead on lead and surface mount ferrites do not afford a large impedance to AC, but the capacitors on each side of the ferrite should eliminate any excessive digital switching noise. Generally, pick a ferrite with the lowest DC resistance and highest impedance to signals centered around 27 MHz. The large capacitor on the component side of the ferrite provides low frequency filtering, and acts as a charge reservoir for rapid current requirements by the ENCODER. Generally, this is located near the ferrite. Some suggested ferrite beads are: * TDK: Wire wound ZBF113T-01; Bead on lead BF45-4001; Surface mount CB50-1206. TDK can be reached at (708) 803-6100. * Fair-Rite: Wire wound beads Fair-Rite 2943666671; Bead on lead 274300111; SM beads 2743021447. Fair-Rite is at (914) 895-2055. Applications that reside in noisy environments or utilize a switching power supply should have local power regulation. For example, designs for the PC should use the 12 volt power supply and locally regulate the supply to 5 volts with a linear regulator. For decoupling, use high quality RF capacitors. Type COG or NPO should be used. Avoid Z5U capacitors. Surface mounting of the filter components is highly recommended. If leaded components are used, keep the leads and traces as short as possible. Use a multilayer PC board with separate power and ground planes. The surface mount package requires the top layer to be a signal layer. The top layer should contain the analog traces, avoid running digital signal traces (clocks and data lines) or other high speed lines directly under the device. The ground plane should be placed directly
Modified on May/04/2000
PAGE 41 OF 44
KS0123 Data Sheet
MULTIMEDIA VIDEO
below the top signal layer. A low impedance ground path from the device is essential to proper operation and isolation. Use one solid ground plane under the ENCODER, do not split the ground plane. The power plane is next with additional signal planes following. Surface mount passive components can be placed on the under side (solder side) of the final signal plane. Mounting passive components (which could not be located close to the ENCODER on the top signal layer) directly under the device should provide superior performance. A four layer PC board is sufficient for most applications, but noisy densely populated designs may require more layers. The output video connectors should be located close to the ENCODER. Orient the package so that short leads can be used. The crystal oscillator components should also be mounted very close to the oscillator pins. The edge rates of clocks and other high speed digital signals should be limited to reduce ringing and noise. Termination with a small series damping resistor (~15 ohms, depends on trace and board characteristics), located at the driving end of a long transmission line, may reduce ringing.
Modified on May/04/2000
PAGE 42 OF 44
KS0123 Data Sheet
NOTES:
MULTIMEDIA VIDEO
Modified on May/04/2000
PAGE 43 OF 44
KS0123 Data Sheet
SAMSUNG SEMICONDUCTOR SALES OFFICES NORTHEAST
119 Russell Street Littleton, MA 01460 TEL (508) 486-0700 FAX (508) 486-8209
MULTIMEDIA VIDEO
NORTHWEST
3655 North Fist Street San Jose, CA 95134-1708 TEL (408) 954-7000 FAX (408) 954-7883
NORTH CENTRAL
300 Park Boulevard Suite 210 Itasca, IL 60143-2636 TEL (708) 775-1050 FAX (708) 775-1058
SOUTHEAST
2000 Regency Parkway Suite 285 Cary, NC 27511 TEL (919) 380-8483 FAX (919) 380-8492
SOUTHWEST
16253 Laguna Canyon Road Suite 100 Irvine, CA 92718 TEL (714)753-7530 FAX (714) 753-7544
SOUTH CENTRAL
15851 Dallas Parkway Suite 410 Dallas, TX 75248-3307 TEL (214) 770-7970 FAX (214) 770-7971
TECHNICAL SUPPORT HOT LINE
Phone: (714)-236-9507 Fax: (714)-236-9664 E-mail: video@sldc.com
Circuit diagrams utilizing SAMSUNG and/or SAMSUNG ELECTRONICS products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described herein any license under the patent rights of SAMSUNG and/or SAMSUNG ELECTRONICS, or others. SAMSUNG and/or SAMSUNG ELECTRONICS, reserve the right to change device specifications. LIFE SUPPORT APPLICATIONS SAMSUNG and/or SAMSUNG ELECTRONICS products are not designed for use in life support applications, devices, or systems where malfunction of a SAMSUNG product can reasonably be expected to result in a personal injury. SAMSUNG and/ or SAMSUNG ELECTRONICS' customers using or selling SAMSUNG and/or SAMSUNG ELECTRONICS products for use in such applications do so at their own risk and agree to fully indemnify SAMSUNG and/or SAMSUNG ELECTRONICS for any damages resulting from such improper use or sale.
Modified on May/04/2000
PAGE 44 OF 44


▲Up To Search▲   

 
Price & Availability of KS0123

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X